Explicit symplectic RKN methods for perturbed non-autonomous oscillators: Splitting, extended and exponentially fitting methods

نویسنده

  • Sergio Blanes
چکیده

We consider the numerical integration of perturbed non-autonomous oscillatory systems using high order methods. The autonomous case has been efficiently integrated using explicit and symplectic Runge–Kutta–Nyström (RKN) methods like extended RKN methods, exponentially fitting RKN methods and splitting methods for perturbed systems. Recently, it has been shown that explicit and symplectic extended RKN methods and exponentially fitting RKN methods are equivalent (Wu et al., 2012) and in this work we show that these methods are also equivalent to splitting methods for perturbed oscillators. We provide a constructive proof which at the same time allows us to build for the first time new explicit and symplectic extended RKNmethods for the non-autonomous problem (for multidimensional time dependent frequencies). The newmethods obtained, while built from splitting methods, are different in the treatment of the time-dependent terms and can be superior in some cases. We build some newmethods and show their performance on numerical examples. © 2015 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-product splitting and Runge-Kutta-Nyström integrators

The splitting of eh(A+B) into a single product of eh A and eh B results in symplectic integrators when A and B are classical Lie operators. However, at high orders, a single product splitting, with exponentially growing number of operators, is very difficult to derive. This work shows that, if the splitting is generalized to a sum of products, then a simple choice of the basis product reduces t...

متن کامل

A Runge-Kutta-Nyström pair for the numerical integration of perturbed oscillators

New Runge–Kutta–Nyström methods especially designed for the numerical integration of perturbed oscillators are presented in this paper. They are capable of exactly integrating the harmonic or unperturbed oscillator. We construct an embedded 4(3) RKN pair that is based on the FSAL property. The new method is much more efficient than previously derived RKN methods for some subclasses of problems....

متن کامل

Multi-symplectic Runge-Kutta-Nyström methods for nonlinear Schrödinger equations with variable coefficients

In this paper, we investigate multi-symplectic Runge-Kutta-Nyström (RKN) methods for nonlinear Schrödinger equations. Concatenating symplecitc Nyström methods in spatial direction and symplecitc Runge-Kutta methods in temporal direction for nonlinear Schrödinger equations leads to multi-symplecitc integrators, i.e. to numerical methods which preserve the multi-symplectic conservation law (MSCL)...

متن کامل

Exponentially small oscillation of 2-dimensional stable and unstable manifolds in 4-dimensional symplectic mappings

Homoclinic bifurcation of 4-dimensional symplectic mappings is asymptotically studied. We construct the 2-dimensional stable and unstable manifolds near the submanifolds which experience exponentially small splitting, and successfully obtain exponentially small oscillating terms in the 2-dimensional manifolds. ∗ E-mail address: [email protected] 1 typeset using PTPTEX.sty <ver...

متن کامل

An efficient numerical method for singularly perturbed second order ordinary differential equation

In this paper an exponentially fitted finite difference method is presented for solving singularly perturbed two-point boundary value problems with the boundary layer. A fitting factor is introduced and the model equation is discretized by a finite difference scheme on an uniform mesh. Thomas algorithm is used to solve the tri-diagonal system. The stability of the algorithm is investigated. It ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer Physics Communications

دوره 193  شماره 

صفحات  -

تاریخ انتشار 2015